
Word Embedding
using Deep Learning
Natural Language Processing

Topics

• Introduction

• Traditional Approaches

• Gradient Descent Optimization

• Word2Vec
• Continuous Bag-of-words Model

• Skip-Gram Model

• Negative Sampling

• Applications

• Conclusion

Introduction

• Language is defined by its words.

• To do Language Processing, we need to tell a computer what a
word means.

• Can we encode a word into a number or a vector such that it
makes sense semantically and syntactically?

Traditional Approaches

• One-hot Encoding

• Co-occurrence Matrix

One-hot Encoding

• Represent every word as an ℝ1 × 𝑉 vector with all 0s and one 1 at
the index of that word in the sorted English language.

e.g.

𝑤𝑐𝑎𝑡 = [0 0 0 … 0 1 0 … 0 0 0]

• Drawbacks
• No notion of word similarity.

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑤ℎ𝑜𝑡𝑒𝑙, 𝑤𝑚𝑜𝑡𝑒𝑙) = 0

• High dimensional and sparse.

Co-occurrence Matrix

e.g.

I enjoy flying.

I like NLP.

I like deep learning

I like enjoy deep learning NLP flying .

I 0 2 1 0 0 0 0 0

like 2 0 0 1 0 1 0 0

enjoy 0

deep 0

learning 0

NLP 0

flying 0

. 0

We loop over a massive dataset and accumulate word co-occurrence
counts in some form of a matrix.

Co-occurrence Matrix Drawbacks

• High Dimensional.
• Use Singular Value Decomposition to reduce the dimension and size.

• Dimensions change with more adding more words to vocabulary.

• Extremely sparse as many words does not co-occur.

• Performing SVD is very computationally heavy.

Can we overcome these drawbacks?

YES!!!

Gradient Descent Optimization

• An optimization algorithm to find local minimum.

Gradient Descent Optimization contd.

• Objective function is our loss function which we want to minimize.

• Linear Classifier

ℎ = 𝑊 ∗ 𝑥

 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(ℎ)

𝐿 𝑦, 𝑦 = −

𝑖

𝑦𝑖 ∗ log 𝑦𝑖

• Update equation

𝑊 = 𝑊 − 𝛼 ∗
𝜕𝐿

𝜕𝑊

Gradient Descent Optimization contd.

𝑳(𝒘)

𝑳𝒎𝒊𝒏(𝒘)

Small learning rate Large learning rate

𝑳(𝒘)

𝒘 𝒘

Initial
weight

Gradient

Gradient Loss Minima

𝑊 = 𝑊 −𝛼 ∗
𝜕𝐿

𝜕𝑊

Gradient Descent Optimization contd.

• Back propagation

𝜕𝐿

𝜕𝑊
=

𝜕𝐿

𝜕ℎ
∗

𝜕ℎ

𝜕𝑊

𝜕𝐿

𝜕ℎ
= 𝑦 − 𝑦

𝜕ℎ

𝜕𝑊
= 𝑥

𝜕𝐿

𝜕𝑊
= 𝑦 − 𝑦 ∗ 𝑥

• Forward Propagation

ℎ = 𝑊 ∗ 𝑥

 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(ℎ)

𝐿 𝑦, 𝑦 = −

𝑖

𝑦𝑖 ∗ log 𝑦𝑖

= − log 𝑦𝑐

= − log
𝑒ℎ𝑐

 𝑖 𝑒
ℎ𝑖

= − ℎ𝑐 + log 𝑖 𝑒
ℎ𝑖

For more information - https://cs231n.github.io - Module 1

https://cs231n.github.io/

Word2Vec

• We use neural networks to define a model to predict between
context words and center word.

• CBOW predicts the center word given the context window words.

• Skip Gram predicts the context words given the center words.

e.g. “The cat jumped over the puddle”

𝑇ℎ𝑒

𝑐𝑎𝑡

𝑜𝑣𝑒𝑟

𝑡ℎ𝑒

𝑝𝑢𝑑𝑑𝑙𝑒

𝑗𝑢𝑚𝑝𝑒𝑑 𝑗𝑢𝑚𝑝𝑒𝑑

𝑇ℎ𝑒

𝑐𝑎𝑡

𝑜𝑣𝑒𝑟

𝑡ℎ𝑒

𝑝𝑢𝑑𝑑𝑙𝑒

Continuous Bag-of-words (CBOW)
1. Initialize the weights 𝑉(input) and 𝑈(output) based on the word

vector size we want, say H.
2. Generate one-hot vector of size N (vocabulary size) for the input

context.
[𝑥𝑐−𝑚 𝑥𝑐−𝑚+1 … 𝑥𝑐+𝑚−1 𝑥𝑐+𝑚]

3. Get the embedded vectors for the context.
𝑣𝑐−𝑚 = 𝑉𝑥𝑐−𝑚

𝑣𝑐−𝑚+1 = 𝑉𝑥𝑐−𝑚+1

…
𝑣𝑐+𝑚−1 = 𝑉𝑥𝑐+𝑚−1

𝑣𝑐+𝑚 = 𝑉𝑥𝑐+𝑚

4. Average the embedded vectors to get 𝑣,
 𝑣 = (𝑣𝑐−𝑚+⋯+ 𝑣𝑐+𝑚)/2𝑚

5. Get the score vector 𝑧,
𝑧 = 𝑈 𝑣

6. Get the probabilities using softmax, 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)
7. Calculate the cross-entropy loss, 𝐿 𝑦, 𝑦 = − 𝑖 𝑦𝑖 ∗ log 𝑦𝑖

Skip-Gram Model
1. Initialize the weights 𝑉(input) and 𝑈(output) based on the word vector size we want, say H.
2. Generate one-hot vector of size N (vocabulary size) for the center word, 𝑥𝑐

3. Get the embedded vector for the context.
 𝑣 = 𝑉𝑥𝑐

4. Get the score vector 𝑧 = 𝑈 𝑣
5. Get the probabilities using softmax, 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)

 Note that 𝑦𝑐−𝑚, 𝑦𝑐−𝑚+1, … , 𝑦𝑐+𝑚−1, 𝑦𝑐+𝑚 are the probabilities
of observing context words.

6. Loss would be,

𝐿 = − log 𝑃 𝑤𝑐−𝑚, … ,𝑤𝑐+𝑚 𝑤𝑐

= − log 𝑗=0,𝑗≠𝑚
2𝑚 𝑃 𝑤𝑐−𝑚+𝑗 𝑤𝑐

= − log 𝑗=0,𝑗≠𝑚
2𝑚 exp(𝑢𝑐−𝑚+𝑗 𝑣)

 𝑘 exp(𝑢
𝑘 𝑣)

= − 𝑗=0,𝑗≠𝑚
2𝑚 𝑢𝑐−𝑚+𝑗 𝑣 + 2𝑚 log 𝑘 exp(𝑢

𝑘 𝑣)

Calculate gradients for CBOW and Skip-Gram

• For Skip-Gram,

𝜕𝐿

𝜕𝑢𝑗
= − 𝑣 + 2𝑚

 𝑣 exp 𝑢𝑗 𝑣

 𝑘 exp 𝑢𝑘 𝑣
, 𝑗 ∈ 𝑐 − 𝑚, , … , 𝑐 + 𝑚 − 𝑐

𝜕𝐿

𝜕𝑢𝑗
= 2𝑚

 𝑣 exp(𝑢𝑗 𝑣)

 𝑘 exp(𝑢
𝑘 𝑣)

, 𝑗 ∉ 𝑐 − 𝑚, , … , 𝑐 + 𝑚 − 𝑐

• For homework, try calculating other gradients for CBOW and Skip-Gram.

Negative Sampling

• Loss function for Skip-Gram,

𝐿 = − 𝑗=0,𝑗≠𝑚
2𝑚 𝑢𝑐−𝑚+𝑗 𝑣 + 2𝑚 log 𝑘

𝑁 exp(𝑢𝑘 𝑣) - Summation over N computationally heavy.

• Instead of looping over all the vocabulary, we can generate some negative examples and update our
loss function.

• Modified Loss function,

𝐿 = − 𝑤,𝑐 ∈ 𝐷 log
1

1+exp −𝑢𝑤𝑣𝑐
− 𝑤,𝑐 ∈ 𝐷 log

1

1+exp 𝑢𝑤𝑣𝑐

For more information - http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-
notes1.pdf

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-notes1.pdf

Advanced Word Vectors

• GloVe

• Fasttext

Applications

• Dependency parsing

• Machine Translation

• Named Entity Recognition

• Text Summarization

• Basically most of the NLP tasks!

Thank you

