Word Embedding
using Deep Learning

Topics

* Introduction

* Traditional Approaches

* Gradient Descent Optimization
* Word2Vec

* Continuous Bag-of-words Model
e Skip-Gram Model
* Negative Sampling

* Applications
e Conclusion

Introduction

* Language is defined by its words.

* To do Language Processing, we need to tell a computer what a
word means.

e Can we encode a word into a number or a vector such that it
makes sense semantically and syntactically?

Traditional Approaches

* One-hot Encoding
e Co-occurrence Matrix

One-hot Encoding

* Represent every word as an R! * VI vector with all Os and one 1 at
the index of that word in the sorted English language.

e.g.
wet =7000..010..000]

e Drawbacks

* No notion of word similarity.

hotel motel)
7) - O

similarity(w w

* High dimensional and sparse.

Co-occurrence Matrix

We loop over a massive dataset and accumulate word co-occurrence
counts in some form of a matrix.

e.g.
g [e e [o [
| enjoy flying.
2 1 0 0 0 0 0

| like NLP. L

: : 2 0 0 1 0 1 0 0
| like deep learning
enjoy 0

deep 0

learning 0
NLP 0
flying 0

Co-occurrence Matrix Drawbacks

* High Dimensional.
* Use Singular Value Decomposition to reduce the dimension and size.

* Dimensions change with more adding more words to vocabulary.
e Extremely sparse as many words does not co-occur.
* Performing SVD is very computationally heavy.

Can we overcome these drawbacks?
YES!!!

Gradient Descent Optimization

* An optimization algorithm to find local minimum.

10 s

5 |= s
/) %‘é"“\\\\\\\\\ <
B NS]
TN
; IS
RS e

=

7 NN
=\

10 3«

Gradient Descent Optimization contd.

* Objective function is our loss function which we want to minimize.

e Linear Classifier

h=W *x
y = softmax(h)

L(y,y) =— Z y; *x logP;
[

e Update equation
oL

W=W —a*x—
oW

Gradient Descent Optimization contd.

W w JoL
- T ow
Initial
weight
L(w)

f | .
Gradient
'l/

Gradient Loss Minima
Lmin(w)
>

Small learning rate

L(w)

w

Large learning rate

Gradient Descent Optimization contd.

* Forward Propagation * Back propagation
h=W=*x oL _ 0oL Oh
ow oh oW
y = softmax(h) o1
L(y,?)=—2yi*log?z on V7Y
i on _
= —logJ. ow
= _log22 = (- y)rx
— gZiehi ow

= — h, + log); el

For more information - https://cs231n.qithub.io - Module 1

https://cs231n.github.io/

Word2Vec

* We use neural networks to define a model to predict between
context words and center word.

* CBOW predicts the center word given the context window words.
* Skip Gram predicts the context words given the center words.

e.g. “The cat jumped over the puddle”

[The 7 [The]
cat cat
over [jJumped | [jumped] over
the the
| puddle . | puddle |

Continuous Bag-of-words (CBOW)

1.

Initialize the weights V(input) and U(output) based on the word

vector size we want, say H.

Generate one-hot vector of size N (vocabulary size) for the input

context.
[xc—m xc—m+1 xc+m—1 xc+m]

Get the embedded vectors for the context.

pCe—Mm — |/ yC—M

pCc—m+l — c—m+l

pctm-1 — y,ctm-1
pctm — pyctm

Average the embedded vectors to get 7,
D= WM+ + vt /2m
Get the score vector z,
z=UD
Get the probabilities using softmax, y = softmax(z)
Calculate the cross-entropy loss, L(y, ¥) = —}.; y; * log¥;

W,

&

= Hidden layer
EC}:

I =

jwm ; En Wiy,
= N-dim

Qutput layer

]

- (s ws

F-dim

Skip-Gram Model

1. Initialize the weights V' (input) and U(output) based on the word vector size we want, say H.

2. Generate one-hot vector of size N (vocabulary size) for the center word, [x€]
3. Get the embedded vector for the context.

U =Vx¢
4. Get the score vector z = UD Input layer

5. Get the probabilities using softmax, y = softmax(z)
= Note that §¢~™, pc—m+l petm—1 HC+M gre the probabilities
of observing context words.
6. Loss would be,

L=—logP(wc™™, ..., wctm|w°)
= —log ?Zﬁ)’jimP (Wc_m+j|wc)

exp(uc~m+ip)
= —1lo 221 . —
g H]-O,]im Zk exp(ukv)

= — ?Z}Ljimuc“m”ﬁ + 2mlog Y, exp(u*d)

xkO

Output layer

= 000

© Vi,

e

= 00 Q]

o Y2,

Calculate gradients for CBOW and Skip-Gram

* For Skip-Gram,
oL ~ ¥ exp(u/D)

ou Y exp(ukd) ’ j €dc—
oL _ '
oul Y exp(ukd)

* For homework, try calculating other gradients for CBOW and Skip-Gram.

|
|
<
|
N
S

m,,..,c+m} —c

’j e{C_Tn'u-'-;c-l_Tn} — C

Negative Sampling

* Loss function for Skip-Gram,

L=-— Z?LnO,j;tm uc"mtp + 2m logIZI,X exp(ud) ‘- Summation over N computationally heavy.

Instead of looping over all the vocabulary, we can generate some negative examples and update our
loss function.

* Modified Loss function,

1 1
L=- Z(w,c) eplog 1+exp(—uWve) B Z(W,C) €D log 1+exp(uWve)

For more information - http://web.stanford.edu/class/cs224n/lecture notes/cs224n-2017-
notesl1.pdf

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-notes1.pdf

Advanced Word Vectors

e GloVe
* Fasttext

Applications

* Dependency parsing

* Machine Translation

 Named Entity Recognition

* Text Summarization

e Basically most of the NLP tasks!

Thank you

