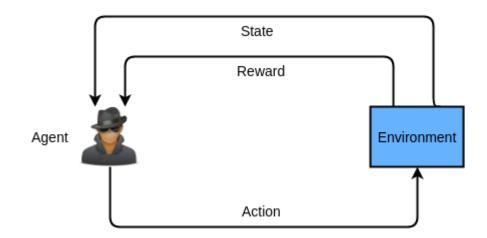
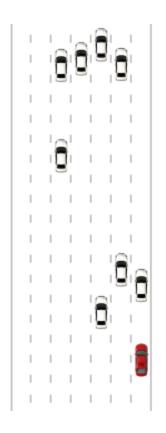
Reinforcement Learning and Deep Q-Network

What is Reinforcement Learning?



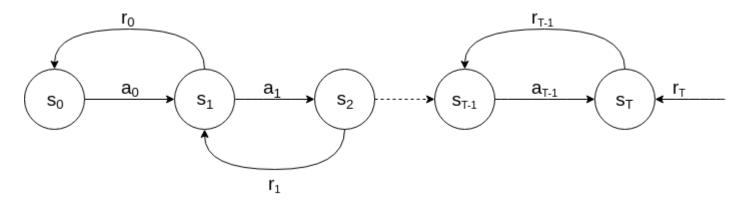
Learn through experience to find the sequence of actions to maximize the reward



Why?

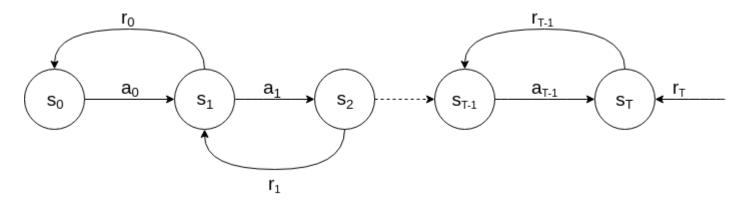
- Analogous to human learning
- Applications in robotics, healthcare, driving cars, consumer modelling etc.

Modelling the Problem



Find a policy $\pi(s) \Rightarrow$ sequence of actions, which maximizes the total rewards, ($r_0 + r_1 + ... + r_T$).

Modelling the Problem



Find a policy $\pi(s) \Rightarrow$ sequence of actions, which maximizes the total discounted rewards, $(r_0 + \lambda r_1 + \lambda^2 r_2 + ... + \lambda^T r_T)$ - discounted for choosing early reward actions.

Q-value

At a given time t, given a state, s, and action, a, what would be the expected future reward.

$$Q(s_t, a_t) = E[R_t]$$
$$Q(s_t, a_t) = E[\sum_{i=t}^T \gamma^{i-t} r_i]$$

Q*-value

At a given time t, given a state, s, and action, a, what would be the maximum expected future reward given an optimal policy π^* .

$$Q^*(s_t, a_t) = \max_{\pi} E[\sum_{i=t}^T \gamma^{i-t} r_i]$$

Bellman Equation

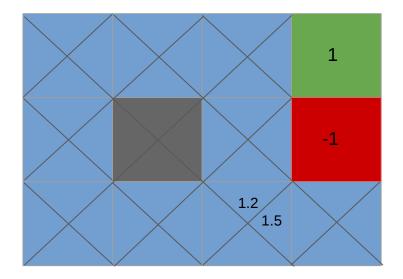
If we know the optimal value $Q^*(s_{t+1}, a_{t+1})$ at the next time step for all actions a_{t+1} , then the optimal Q-value at the current time step is given by,

$$Q^*(s_t, a_t) = E[r_t + \gamma Q^*(s_{t+1}, a_{t+1})]$$

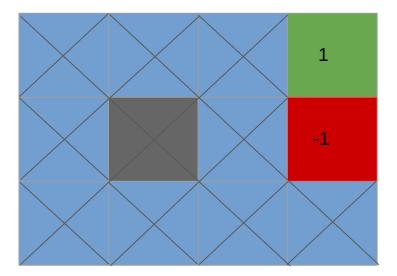
$$Q^*(s_{t+1}, a_{t+1})?$$

Exploration and Exploitation

At a given state s_t , if we decide to take action a_t , it does so with probability 1 - ϵ . With probability ϵ , our agent might land up in other states $\rightarrow \epsilon$ -greedy exploration



We initialize the q-values with some random values and then take actions for which q-value is maximum.



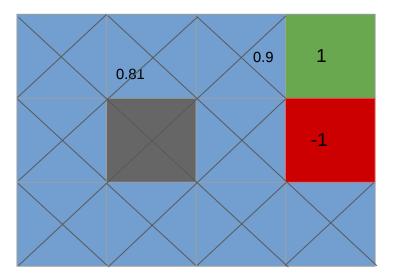
As number of iterations, i $\rightarrow \infty$, Q $\rightarrow Q^*$

We initialize the q-values with some random values and then take actions for which q-value is maximum.



As number of iterations, i $\rightarrow \infty$, Q $\rightarrow Q^*$

We initialize the q-values with some random values and then take actions for which q-value is maximum.



As number of iterations, i $\rightarrow \infty$, Q $\rightarrow Q^*$

Code Walkthrough - Quickly

Drawback

If there are large number of states and actions, often, the case in the real world scenario, it would take forever to find the optimal q-values for all the states.

Total number of (states, action) =

- Image 84 x 84
- Gray-level 256
- Temporal Window 4

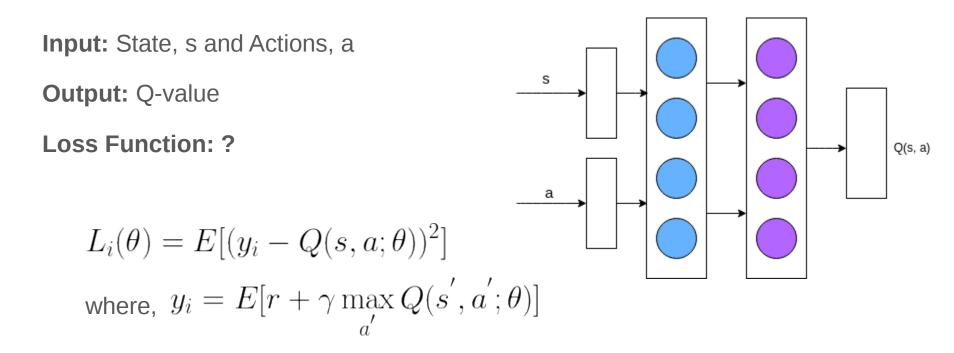
256^{84x84x4}

Deep Reinforcement Learning

Use neural network to approximate the optimal Q-value parameterized by weights, $\boldsymbol{\theta}.$

$$Q(s,a;\theta) \approx Q^*(s,a)$$

Deep Q-Network



Algorithm

1. Initialize the weights with random values.

- 2. Do a forward pass with current state s and actions a, and calculate the Q(s,a).
- 3. Choose action based on epsilon greedy exploration and get next state s'.
- 4. Do a forward pass with next state s' and actions a' and find the maximum Q value.
- 5. Assign y_i (target) as the sum of reward received from step 2 and discounted Q-value calculated from $\overline{the}^r step 3^m a X epicted from the equation,$

6. Calculate the loss from the result received from step 2 and 4.

7 Lise back-propagation to undate the weights

Demo

- <u>http://selfdrivingcars.mit.edu/deeptrafficjs/</u>
- Trained Model Video

Challenges

- Traffic Light Detection
- Lane Detection
- Pedestrian Detection
- Many More...

Tesla Video

Questions?

Marax Al Inc

⊙ Thank you ⊙